Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae.
نویسندگان
چکیده
We tested the hypothesis that the time course of the evolution of antifungal drug resistance depends on the ploidy of the fungus. The experiments were designed to measure the initial response to the selection imposed by the antifungal drug fluconazole up to and including the fixation of the first resistance mutation in populations of Saccharomyces cerevisiae. Under conditions of low drug concentration, mutations in the genes PDR1 and PDR3, which regulate the ABC transporters implicated in resistance to fluconazole, are favored. In this environment, diploid populations of defined size consistently became fixed for a resistance mutation sooner than haploid populations. Experiments manipulating population sizes showed that this advantage of diploids was due to increased mutation availability relative to that of haploids; in effect, diploids have twice the number of mutational targets as haploids and hence have a reduced waiting time for mutations to occur. Under conditions of high drug concentration, recessive mutations in ERG3, which result in resistance through altered sterol synthesis, are favored. In this environment, haploids consistently achieved resistance much sooner than diploids. When 29 haploid and 29 diploid populations were evolved for 100 generations in low drug concentration, the mutations fixed in diploid populations were all dominant, while the mutations fixed in haploid populations were either recessive (16 populations) or dominant (13 populations). Further, the spectrum of the 53 nonsynonymous mutations identified at the sequence level was different between haploids and diploids. These results fit existing theory on the relative abilities of haploids and diploids to adapt and suggest that the ploidy of the fungal pathogen has a strong impact on the evolution of fluconazole resistance.
منابع مشابه
Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae.
We show that mode of selection, degree of dominance of mutations, and ploidy are determining factors in the evolution of resistance to the antifungal drug fluconazole in yeast. In experiment 1, yeast populations were subjected to a stepwise increase in fluconazole concentration over 400 generations. Under this regimen, two mutations in the same two chromosomal regions rose to high frequency in ...
متن کاملGreen synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae
Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...
متن کاملThe AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337).
Aureobasidin A (LY295337) is a cyclic depsipeptide antifungal agent with activity against Candida spp. The mechanism of action of LY295337 remains unknown. LY295337 also shows activity against the yeast Saccharomyces cerevisiae. Generation of a mutant of S. cerevisiae resistant to LY295337 is reported. Resistance was found to reside in a dominant mutation of a single gene which has been named A...
متن کاملGenetic and Genomic Architecture of the Evolution of Resistance to Antifungal Drug Combinations
The evolution of drug resistance in fungal pathogens compromises the efficacy of the limited number of antifungal drugs. Drug combinations have emerged as a powerful strategy to enhance antifungal efficacy and abrogate drug resistance, but the impact on the evolution of drug resistance remains largely unexplored. Targeting the molecular chaperone Hsp90 or its downstream effector, the protein ph...
متن کاملGenomic Convergence toward Diploidy in Saccharomyces cerevisiae
Genome size, a fundamental aspect of any organism, is subject to a variety of mutational and selection pressures. We investigated genome size evolution in haploid, diploid, and tetraploid initially isogenic lines of the yeast Saccharomyces cerevisiae. Over the course of approximately 1,800 generations of mitotic division, we observed convergence toward diploid DNA content in all replicate lines...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 168 4 شماره
صفحات -
تاریخ انتشار 2004